Classification of Hand Gestures Using Gabor Filter with Bayesian and Naïve Bayes Classifier
نویسندگان
چکیده
منابع مشابه
Image Classification Using Naïve Bayes Classifier
An image classification scheme using Naïve Bayes Classifier is proposed in this paper. The proposed Naive Bayes Classifier-based image classifier can be considered as the maximum a posteriori decision rule. The Naïve Bayes Classifier can produce very accurate classification results with a minimum training time when compared to conventional supervised or unsupervised learning algorithms. Compreh...
متن کاملHand Gestures Classification with Multi-Core DTW
Classifications of several gesture types are very helpful in several applications. This paper tries to address fast classifications of hand gestures using DTW over multi-core simple processors. We presented a methodology to distribute templates over multi-cores and then allow parallel execution of the classification. The results were presented to voting algorithm in which the majority vote was ...
متن کاملSemantic Naïve Bayes Classifier for Document Classification
In this paper, we propose a semantic naïve Bayes classifier (SNBC) to improve the conventional naïve Bayes classifier (NBC) by incorporating “document-level” semantic information for document classification (DC). To capture the semantic information from each document, we develop semantic feature extraction and modeling algorithms. For semantic feature extraction, we first apply a log-Bilinear d...
متن کاملModified Naïve Bayes Classifier for E-Catalog Classification
As the wide use of online business transactions, the volume of product information that needs to be managed in a system has become drastically large, and the classification task of such data has become highly complex. The heterogeneity among competing standard classification schemes makes the problem only harder. However, the classification task is an indispensable part for successful e-commerc...
متن کاملBoosting the Tree Augmented Naïve Bayes Classifier
The Tree Augmented Naïve Bayes (TAN) classifier relaxes the sweeping independence assumptions of the Naïve Bayes approach by taking account of conditional probabilities. It does this in a limited sense, by incorporating the conditional probability of each attribute given the class and (at most) one other attribute. The method of boosting has previously proven very effective in improving the per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Computer Science and Applications
سال: 2016
ISSN: 2156-5570,2158-107X
DOI: 10.14569/ijacsa.2016.070340